Stability of isentropic Navier–Stokes shocks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of isentropic Navier-Stokes shocks

We announce recent results obtained through a combination of asymptotic ODE estimates and numerical Evans function calculations, which together yield stability of isentropic Navier–Stokes shocks for a γ-law gas with 1 ≤ γ ≤ [1, 2.5]. Other γ may be treated similarly.

متن کامل

Stability of Viscous Shocks in Isentropic Gas Dynamics

In this paper, we examine the stability problem for viscous shock solutions of the isentropic compressible Navier–Stokes equations, or p-system with real viscosity. We first revisit the work of Matsumura and Nishihara, extending the known parameter regime for which small-amplitude viscous shocks are provably spectrally stable by an optimized version of their original argument. Next, using a nov...

متن کامل

Stability of Isentropic Navier–Stokes Shocks in the High-Mach Number Limit∗

By a combination of asymptotic ODE estimates and numerical Evans function calculations, we establish stability of viscous shock solutions of the isentropic compressible Navier–Stokes equations with γ -law pressure (i) in the limit as Mach number M goes to infinity, for any γ ≥ 1 (proved analytically), and (ii) for M ≥ 2, 500, γ ∈ [1, 2.5] or M ≥ 13, 000, γ ∈ [2.5, 3] (demonstrated numerically)....

متن کامل

From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks

This article is devoted to the proof of the hydrodynamical limit from kinetic equations (including BGK-like equations) to multidimensional isentropic gas dynamics. It is based on a relative entropy method; hence the derivation is valid only before shocks appear on the limit system solution. However, no a priori knowledge on high velocity distributions for kinetic functions is needed. The case o...

متن کامل

Spectral Stability of Noncharacteristic Isentropic Navier–Stokes Boundary Layers

Building on the work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or shock-like, boundary layers of the isentropic compressible Navier–Stokes equations with γ -law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our analytical results include convergence of the Evans function in the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2008

ISSN: 0893-9659

DOI: 10.1016/j.aml.2007.07.025